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Abstract

The unsteady heat conduction analysis for multi-directional piecewise-homogeneous bodies is generally held to be

complex and demanding, possibly explaining why practical guidelines for thermal field calculation are few and far

between. The proposed solution method represents an extension of the new, �natural� analytic approach derived in

companion papers for solving one-dimensional multi-layer problems of time-dependent heat conduction. As the ap-

proach is new, it is presented in full, together with the complete temperature double-series solution prepared for

computer implementation. By setting thermal diffusivity ratio unitary and assuming a uniform distribution of initial

temperature, it emerges that, all other things being equal, the transient thermal response can be expressed as the product

of two, separated, one-directional solutions, one across the layers and the other along the composite slab. The for-

mulation deals properly with thermal conductivity ratios of all magnitudes. An efficient and accurate procedure of

computing eigenvalues is given. Graphical and numerical output is presented and discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Exact closed-form solutions in multi-layer multi-

dimensional transient heat conduction instead of nu-

merical commercial programs ready to hand can be

successfully and efficiently used in several engineering

applications such as: (1) double heat flux conductimeter

(three-layer slab); (2) thermal analysis of building multi-

layer walls; (3) thermal insulation for cryogenic systems;

(4) solar ovens (composite cylinder placed at the focus),

and (5) double layer bodies (of innovative materials)

irradiated by laser sources. Additionally, an involved

closed-form solution represents for the user a simplified

task. The objective of this article is to provide extremely

accurate solutions ready for computer implementation

for verifying the accuracy of complex approximate nu-

merical (commercial) programs for multi-dimensional

multi-layer transient heat conduction problems [1]. In

such a way, the comparisons with its solutions are very

reliable.

The analysis of multi-directional time-dependent heat

conduction in composite media consisting of several dif-

ferent parallel layers in contact may be analytically per-

formed following different approaches below described.

The orthogonal expansion technique derived by Pa-

dovan [2], Salt [3,4], and Mikhailov and €OOzis�ik [5]. Pa-

dovan [2] analysed a 3-D configuration consisting of

several distinct arbitrary thermally anisotropic subdo-

mains with internal heat generation and in perfect

thermal contact. A 3-D anisotropic generalised version

of the classical Sturm–Liouville procedure [6,7] was es-

tablished. However, the �product formula� was not ap-

plied to the 3-D space-variable function and, therefore,

the final temperature solution was presented only for-

mally. Salt [3,4] examined a 2-D multi-layer isotropic-

composite slab (without internal heat source) whose

layers were in perfect thermal contact. The composite

plate was subjected to linear homogeneous boundary

conditions in the direction perpendicular to the layers.

Salt [4] demonstrated first that the eigenvalues for the
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solution transverse to the layers can progressively be-

come imaginary in the region with higher thermal dif-

fusivity. However, no numerical example was presented.

Mikhailov and €OOzis�ik [5], instead, analysed the 3-D

version of Salt�s problem. The eigenproblem associated

to the solution of the transient multi-layer heat con-

duction under consideration was split up into three,

separated, 1-D eigenproblems. In particular, through a

very clever algebraic setting, the eigenvalue problem in

the direction perpendicular to the layers coincided with

the classical 1-D Sturm–Liouville procedure. However,

no numerical result was provided and no consideration

concerning imaginary transverse eigenvalues was given.

The Green’s function solution method developed by

Beck et al. [8,9]. In [8] the method was applied to a 3-D

two-layer (firmly joined) isotropic-composite slab with

internal heat source. Numerical values for three exam-

ples were presented but the solution transverse to the

layers did not include the contribution of possible

imaginary eigenvalues. In [9], instead, the technique was

applied to a 3-D two-layer orthotropic-composite slab

with internal energy generation and contact thermal

resistance between the layers. Numerical values for three

examples were given and the complete solution retained

all eigenvalues, real and imaginary [10,11], in accordance

with Salt�s result [4]. Additionally, in both Refs. [10,11],

the concept of �time partitioning� [12,13] was used in

order to achieve much more efficient temperature solu-

tions (although a tiny bit less accurate).

The Laplace transform approach used by Levine [14],

and Kozlov and Mandrix [15,16]. Levine [14] considered

a spherical surface subjected to a homogeneous bound-

Nomenclature

ai dimension of the ith layer along x (Fig. 1)

b dimension of each layer along y (Fig. 1)

Bii Biot number for the ith layer: hia1=k1
Bih;i Biot number for the homogeneous slab as-

sociated to the two-layer slab: hiL=kh
fiðx; yÞ arbitrary initial temperature distribution for

the ith layer

Fiðx; yÞ arbitrary initial temperature difference for

the ith layer: T1 � fiðx; yÞ
hi heat transfer coefficient for the ith layer at

the x-boundary side of Fig. 1

hl heat transfer coefficient for the slab at the y-
boundary side of Fig. 1

kh thermal conductivity of the homogeneous

slab associated to the two-layer slab

ki thermal conductivity of the ith layer

L total dimension of the two-layer slab along x
(Fig. 1): a1 þ a2

Nx;mn mth� nth x-norm defined by Eq. (39)

Ny;m mth y-norm defined in Table 2

t time

Ti temperature for the ith layer

T0 uniform initial temperature of the composite

domain

T1 fluid temperature

x, y rectangular space coordinates

X 0
i;mnðxÞ mth� nth x-eigenfunction corresponding to

kix;mn for the ith layer

Y 0
mðyÞ mth y-eigenfunction related to ky;m for each

of the two layers

Greek symbols

ai thermal diffusivity of the ith layer

bn;n nth dimensionless eigenvalue for n-direction
(when a1 ¼ a2): kx;na1

bn;h;n nth dimensionless transverse eigenvalue of

the homogeneous slab associated to the two-

layer slab (when a1 ¼ a2): kx;h;nL
bw;m mth dimensionless eigenvalue for w-direc-

tion: ky;ma1
c, l geometric ratios: a2=a1, b=a1
fn;n nth initial guess for the nth dimensionless

transverse eigenvalue bn;n

hi temperature difference for the ith layer:

T1 � Ti
h0 uniform initial temperature difference:

T1 � T0
Hi dimensionless temperature for the ith layer:

hi=h0

j thermal conductivity ratio: k2=k1
kix;mn mth� nth eigenvalue of the ith layer for x-

direction

kx;n nth eigenvalue for x-direction (when a1 ¼ a2)

ky;m mth eigenvalue along y
n, w dimensionless rectangular space coordi-

nates: x=a1, y=a1
s dimensionless time (when a1 ¼ a2 ¼ a):

at=a21

Subscripts

i index (i.e., 1 or 2)

l index (i.e., 0 or b)
m integer number (including zero)

n integer number (including zero)

0, b lower ðy ¼ 0Þ and upper ðy ¼ bÞ sides of the
rectangular in Fig. 1

1 first layer ð�a1 6 x6 0; 06 y6 bÞ; left side

ðx ¼ �a1Þ of the domain in Fig. 1

2 second layer ð06 x6 a2; 06 y6 bÞ; right side
ðx ¼ a2Þ of the domain in Fig. 1
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ary condition of the first kind and surrounded by a

composite medium made up of two different isotropic

concentric regions (the outer one was assumed infinitely

large) where a point heat source was located. The

problem was considered two dimensional and no nu-

merical application was presented. Kozlov and Mandrix

[15,16], instead, examined a 2-D isotropic-composite

system (without internal heat source) consisting of a

bounded cylinder and a semibounded body that per-

fectly (in a thermal sense) touch each other at one of the

end surfaces of the cylinder. The composite configura-

tion was subjected to homogeneous boundary condi-

tions in the direction perpendicular to the layers.

However, the solution was obtained only in the region of

Laplace transforms and, therefore, no numerical result

was provided.

All the research workers mentioned above agree the

solution is able to deal only with homogeneous bound-

ary conditions of the first kind and second kind in the

direction parallel to the layers, since the (linear) homo-

geneous boundary condition of the third kind uncondi-

tionally produces mathematical incompatibilities.

Recently, a �natural� analytic approach for solving

one-dimensional transient heat conduction in multi-

layer composite media was derived by de Monte [17,18].

The main feature of this approach is to retain the ther-

mal diffusivity of each layer on the side of the heat

conduction equation (modified from the application of

the separation-of-variables method) where the time-

dependent function is collected. Making this, the modi-

fied heat conduction equation by itself represents a

transparent statement of the physical phenomena in-

volved and straightly leads to a series solution of the

problem where the time-variable function is explicitly

dependent on the thermal diffusivity.

In the present paper the new, natural analytic solu-

tion method is extended to two-dimensional composites

of two rectangular parallel layers which are in perfect

thermal contact. By assuming an appropriate separation

of variables, the eigenvalue problem associated to the

general temperature solution is split up into two one-

dimensional eigenproblems. The eigenvalue problem in

the direction of the layers is a special case of a more

general eigenproblem called the Sturm–Liouville prob-

lem [6,7]. The eigenproblem in the direction perpendic-

ular to the layers, instead, is characterised by real and

imaginary eigenvalues and, therefore, does not lead to

the class of Sturm–Liouville eigenproblems. In particu-

lar, the eigenfunctions across the layers (corresponding

to the transverse eigenvalues) are chosen with the target

to identify and stress �those algebraic terms� which ac-

count for the heat conduction in the direction parallel to

the layers and affect the thermal field in the direction

where the slab is two-layered (clearly, no similar term

exists in a two-dimensional homogeneous domain).

Therefore, a new orthogonality property (embodying

the transverse norm) is developed by the author and

then used as a straightforward matter to achieve the

final double-series form of the exact closed-form solu-

tion.

A numerical example is presented and discussed at

the end of the paper to show how the proposed tech-

nique works. In particular, the transverse eigenvalues

are computed by the use of an efficient and accurate

procedure developed by the author and fully treated in

Ref. [19]. It is based on the concept of �homogeneous
(single-layer) rectangular domain� equivalent to the two-

dimensional two-layered domain here under discussion.

This concept is used for searching the initial guesses for

the transverse eigenvalues of the eigencondition asso-

ciated to the transient multi-layer problem. Then, the

M€uuller root-finding iteration [20] is used to compute the

eigenvalues. Furthermore, by setting thermal diffusivity

ratio unitary and assuming a uniform distribution of

initial temperature, the isothermal curves within the

2-D two-layer slab during the transient heat transfer

between slab and surrounding fluid are plotted at dif-

ferent times.

2. Formulation of the problem

Consider a two-layer rectangle with edges which run

parallel with the x and y coordinate directions respec-

tively, as shown in Fig. 1. Initially ðt ¼ 0Þ the two-

dimensional isotropic composite slab is at a specified

temperature f ðx; yÞ. Then, for t > 0, the surface of the

slab is brought into contact with a fluid whose temper-

ature T1 is constant with time. The heat transfer coef-

ficient is assumed to be independent of time and

temperature but different on all sides of the plate. Fur-

thermore, there is no internal heat source and the ma-

terial thermal properties are temperature independent

and uniform within each layer. Under these assump-

tions, the heat conduction differential equation and the

outer and inner boundary conditions are:

o2hi

ox2
þ o2hi

oy2
¼ 1

ai

ohi

ot
ð1Þ

	ki
ohi

ox

� �
x¼	ai

þ hihiðx ¼ 	ai; y; tÞ ¼ 0 ð2Þ

�ki
ohi

oy

� �
y¼0

þ h0hiðx; y ¼ 0; tÞ ¼ 0 ð3Þ

ki
ohi

oy

� �
y¼b

þ hbhiðx; y ¼ b; tÞ ¼ 0 ð4Þ

h1ðx ¼ 0; y; tÞ ¼ h2ðx ¼ 0; y; tÞ ð5Þ

k1
oh1

ox

� �
x¼0

¼ k2
oh2

ox

� �
x¼0

ð6Þ
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where the negative sign in Eq. (2) is valid for i ¼ 1, while

the positive sign for i ¼ 2. In Eq. (2) the heat transfer

coefficient hi may be chosen in such a way as to yield

either Dirichlet, Neumann or Cauchy type boundary

conditions. Eq. (5) is only valid if no thermal contact

resistance occurs at the separation points of the two

layers (continuity of temperature) [21]. For sake of

completeness, it should be said that Eq. (6) is only valid

if there is no heat source distribution over the surface of

separation of the two layers (i.e., no prescribed discon-

tinuity in heat flux). Additionally, the initial condition

hiðx; y; t ¼ 0Þ ¼ Fiðx; yÞ ð7Þ

is valid. Fig. 1 shows that equation x ¼ 0 coincides with

the line of separation of the two slab-shaped regions.

This choice allows the analytical development to be

notably simplified when the inner boundary conditions,

i.e. Eqs. (5) and (6), are applied to search the tempera-

ture solution.

3. Separating the variables

Since the outer boundary conditions (2)–(4) are ho-

mogeneous, the product or separation formula

hiðx; y; tÞ ¼ XiðxÞYiðyÞGiðtÞ ð8Þ

may be applied in order to find a solution to the dif-

ferential equation (1). However, when product solution

is used, the fulfilment of the inner boundary conditions

(5) and (6) is only possible (as will be better shown in

Section 5) when, as outer boundary conditions (3) and

(4) in the y-direction, constant temperature at zero level

or adiabatic edges are rigorously prescribed. The func-

tions XiðxÞ, YiðyÞ and GiðtÞ satisfy the following differ-

ential equation from (1)

1

Xi

d2Xi

dx2
þ 1

Yi

d2Yi
dy2

¼ 1

aiGi

dGi

dt
ð9Þ

It may be noted that, in separating the variables, the

thermal diffusivity ai is retained on the right side of Eq.

(9), where the time-dependent function GiðtÞ is collected,
according to the natural analytic approach developed by

de Monte [17,18]. The product formula (8) yields three

easy to solve ordinary differential equations from (9)

d2Xi

dx2
þ k2

ixXi ¼ 0 ð10Þ

d2Yi
dy2

þ k2
iyYi ¼ 0 ð11Þ

dGi

dt
þ ðk2

ix þ k2
iyÞaiGi ¼ 0 ð12Þ

The space-variable functions XiðxÞ and YiðyÞ satisfy the

differential equations (10) and (11), respectively, known

as the differential equations governing harmonic oscil-

lations. The general solutions are

XiðxÞ ¼ Aix cosðkixxÞ þ Bix sinðkixxÞ ð13Þ

YiðyÞ ¼ Aiy cosðkiyyÞ þ Biy sinðkiyyÞ ð14Þ

where Aix, Aiy , Bix, Biy ði ¼ 1; 2Þ are the integration con-

stants along x and y related to the first and second

layers. Instead, the solution of the differential equation

Fig. 1. Boundary and initial conditions for heat conduction analysis of a two-layer rectangular region.
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(12) for the time function GiðtÞ is the decay exponential

function

GiðtÞ ¼ e�ðk2ixþk2iy Þai t ð15Þ

4. Application of outer boundary conditions

It follows from the outer boundary conditions (2)–(4)

that

Aix ¼ 
BixPixðkixÞ ð16Þ

PixðkixÞ ¼
kikix þ hi tanðkixaiÞ
hi � kikix tanðkixaiÞ

ð17Þ

Aiy ¼ BiyPiyðkiyÞ ð18Þ

PiyðkiyÞ ¼
kikiy

h0
ð19Þ

tanðkiybÞ ¼
kikiyðh0 þ hbÞ
ðkikiyÞ2 � h0hb

ð20Þ

In Eq. (16) the positive sign is valid when i ¼ 1 (first

layer), while the negative sign when i ¼ 2 (second layer).

In view of Eq. (18), the function YiðyÞ given by Eq. (14)

becomes

YiðyÞ ¼ Biy ½sinðkiyyÞ þ PiyðkiyÞ cosðkiyyÞ�
¼ BiyY 0

i ðyÞ ð21Þ

where kiy is any positive root other than zero of the

transcendental equation (20).

5. Application of inner boundary conditions

It follows from the inner boundary conditions (5) and

(6) (compatibility conditions) that

B1xP1xY1ðyÞe�ðk2
1xþk2

1y Þa1t ¼ �B2xP2xY2ðyÞe�ðk2
2xþk2

2y Þa2t ð22Þ

k1B1xk1xY1ðyÞe�ðk2
1xþk2

1y Þa1t ¼ k2B2xk2xY2ðyÞe�ðk2
2xþk2

2y Þa2t ð23Þ

Since conductivity and diffusivity are discontinuous at

the interface of the two layers, i.e. at ðx ¼ 0; yÞ where

y 2 ½0; b�, Eqs. (22) and (23) are only verified when:

Y1ðyÞ ¼ Y2ðyÞ ð24Þ

ðk2
1x þ k2

1yÞa1 ¼ ðk2
2x þ k2

2yÞa2 ð25Þ

B2x ¼ �B1x
P1x

P2x
ð26Þ

B2x ¼ B1x
k1k1x

k2k2x
ð27Þ

Bearing in mind Eq. (21), it should be noted that Eq.

(24) is only verified when B1y ¼ B2y ¼ By and the heat

transfer coefficients h0 and hb, appearing in the y-
boundary conditions (3) and (4), respectively, assume

the limit values 0 (boundary kept insulated, i.e. ho-

mogeneous boundary condition of the second kind)

and 1 (boundary kept at zero temperature, i.e. ho-

mogeneous boundary condition of the first kind), as

shown in Table 1. These values, in fact, lead to four

different boundary-value problems along y character-

ised by

• the same undetermined parameter along y, i.e.

k1y ¼ k2y ¼ ky , where ky is any positive root of Eq.

(20) represented in a simplified form in Table 1;

• the same y-position function in each of the two lay-

ers, i.e. Y 0
1ðyÞ ¼ Y 0

2ðyÞ ¼ Y 0ðyÞ which is clearly inde-

pendent both of the thermal conductivity of each

region and of the heat transfer coefficients h0 and

hb (see Table 1).

Therefore, in this paper, the analytic treatment will ac-

count for only the four cases of y-boundary conditions

given in Table 1.

In view of Eq. (16), the function X1ðxÞ given by Eq.

(13) for i ¼ 1 becomes

X1ðxÞ ¼ B1x½sinðk1xxÞ þ P1xðk1xÞ cosðk1xxÞ� ð28Þ

Similarly, in view of Eqs. (16) and (27), the function

X2ðxÞ defined by Eq. (13) for i ¼ 2 reduces to

X2ðxÞ ¼ B1x
k1k1x

k2k2x
½sinðk2xxÞ � P2xðk2xÞ cosðk2xxÞ� ð29Þ

Furthermore, comparing Eqs. (26) and (27) yields the

following result

P1xðk1xÞ ¼ � k1k1x

k2k2x
P2xðk2xÞ ð30Þ

Table 1

Homogeneous boundary conditions in the direction parallel to the layers

h0 hb Case Eq. (3) Eq. (4) Eq. (19) Eq. (20) Eq. (21)

1 1 1 hiðx; y ¼ 0; tÞ ¼ 0 hiðx; y ¼ b; tÞ ¼ 0 PiyðkiyÞ ¼ 0 sinðkiybÞ ¼ 0 Y 0
i ðyÞ ¼ sinðkiy yÞ

0 0 2 ðohi=oyÞy¼0 ¼ 0 ðohi=oyÞy¼b ¼ 0 PiyðkiyÞ ¼ 1 sinðkiybÞ ¼ 0 Y 0
i ðyÞ ¼ cosðkiyyÞ

1 0 3 hiðx; y ¼ 0; tÞ ¼ 0 ðohi=oyÞy¼b ¼ 0 PiyðkiyÞ ¼ 0 cosðkiybÞ ¼ 0 Y 0
i ðyÞ ¼ sinðkiy yÞ

0 1 4 ðohi=oyÞy¼0 ¼ 0 hiðx; y ¼ b; tÞ ¼ 0 PiyðkiyÞ ¼ 1 cosðkiybÞ ¼ 0 Y 0
i ðyÞ ¼ cosðkiyyÞ
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where k2x may be evaluated by means of Eq. (25), where

k1y ¼ k2y ¼ ky , as

k2x ¼
a1

a2

� �
k2
1x

�
þ a1

a2

�
� 1

�
k2
y

�1=2
ð31Þ

6. The eigenvalue problem in the y-direction

The homogeneous y-boundary value problem posed

by the differential equation (11) and the y-boundary
conditions (3) and (4), where hi should be substituted

with Yi, is a special case of a more general eigenvalue

problem called the one-dimensional linear Sturm–

Liouville boundary value eigenproblem treated in [6,7]

for which a series of general theorems are valid

[6,7,21,22]. Concerning this, Table 2 shows that the

roots (y-eigenvalues) of the simplified y-eigencondition
(20) are infinite, distinct and real (the y-eigenvalues
form a monotically increasing infinite series) in ac-

cordance with the Sturm–Liouville procedure: ky;0 <
ky;1 < � � � < ky;m . . . ðm ¼ 0; 1; 2; 3; . . .Þ. Therefore, there

are infinite functions having the simplified form (21)

given in Table 1, each corresponding to a consecutive

value of the y-eigenvalues ky;m:

YmðyÞ ¼ By;mY 0
mðyÞ y 2 ½0; b� ð32Þ

where the functions Y 0
mðyÞ are shown in Table 2. They

have been assumed as the y-eigenfunctions correspond-
ing to the y-eigenvalues ky;m, and are orthogonal func-

tions [21,22], i.e. it holds that

Z b

y¼0

Y 0
mY

0
j dy ¼

0 for m 6¼ j
Ny;m for m ¼ j

�
ð33Þ

where Ny;m represents the mth y-norm, which may be

evaluated as indicated in Table 2.

7. The eigenvalue problem in the x-direction

The homogeneous x-eigenvalue problem posed by the

differential equation (10) and the x-boundary conditions

(2), (5) and (6), where hi ði ¼ 1; 2Þ should be replaced by

Xi, does not lead to the class of Sturm–Liouville eigen-

problems [6,7] when the thermal properties (density,

specific heat and thermal conductivity) are stepwise

functions in the x-direction [6,7]. The reason for all that

is due to the choice here adopted about the parameters

used in separating the variables. In other words, two

undetermined parameters ðkix and kiyÞ have been intro-

duced to characterise the position functions XiðxÞ and

YiðyÞ, as shown in Eqs. (10) and (11), but no undeter-

mined parameter has been introduced for the time

function GiðtÞ (see Eq. (12)).

Consequently, substituting Eq. (31) in Eq. (30), we

obtain a transcendental equation (x-eigencondition)
whose roots k1x are the x-eigenvalues related to the first

layer and may clearly be real or imaginary according to

what was established in Refs. [4,9,10] and at variance

with the Sturm–Liouville procedure [6,7]. Since they

depend on ky;m ðm ¼ 0; 1; 2; 3; . . .Þ, there exist m� n
functions ðn ¼ 0; 1; 2; 3; . . .Þ having the form (28), each

corresponding to a consecutive value of the x-eigen-
values k1x;mn:

X1;mnðxÞ ¼ B1x;mnX 0
1;mnðxÞ x 2 ½�a1; 0� ð34Þ

Once the eigenvalues ky;m and k1x;mn have been calcu-

lated, Eq. (31) provides the x-eigenvalues k2x;mn

ðn ¼ 0; 1; 2; 3; . . .Þ related to the second layer, which may

be real or imaginary according to what was previously

said. Consequently, there are m� n functions having the

form (29), each corresponding to a consecutive value of

the x-eigenvalues k2x;mn:

X2;mnðxÞ ¼ B1x;mn
k1k1x;mn

k2k2x;mn
X 0
2;mnðxÞ x 2 ½0; a2� ð35Þ

Table 2

The eigenvalue problem in the y-coordinate direction

Case y-Eigencondition y-Eigenvalues ky;m

ðm ¼ 0; 1; 2; 3; . . .Þ
y-Eigenfunctions
Y 0
mðyÞ y 2 ½0; b�

y-Norm Ny;m cy;m coefficients-Eq. (52) with IyðyÞ ¼ 1

1 sinðkybÞ ¼ 0 mp=ba sinðky;myÞ b=2 0 for m ¼ 2; 4; 6; . . .
4=ðmpÞ for m ¼ 1; 3; 5; . . .

2 sinðkybÞ ¼ 0 mp=b cosðky;myÞ b=2b 1 for m ¼ 0
0 for m ¼ 1; 2; 3; . . .

3 cosðkybÞ ¼ 0 ðmþ 1=2Þp=b sinðky;myÞ b=2 1=½ð2mþ 1Þp� for m ¼ 0; 1; 2; 3; . . .

4 cosðkybÞ ¼ 0 ðmþ 1=2Þp=b cosðky;myÞ b=2 ð�1Þm=½ð2mþ 1Þp� for m ¼ 0; 1; 2; 3; . . .

am ¼ 1; 2; 3; . . .
bNy;0 ¼ b.
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The dimensionless functions X 0
1;mnðxÞ and X 0

2;mnðxÞ, which
appear in Eqs. (34) and (35), have been assumed as the x-
eigenfunctions corresponding to the x-eigenvalues k1x;mn

(first layer) and k2x;mn (second layer), respectively, and

are defined as (see Eqs. (28) and (29))

X 0
1;mnðxÞ ¼ sinðk1x;mnxÞ þ P1x;mn cosðk1x;mnxÞ
x 2 ½�a1; 0� ð36Þ

X 0
2;mnðxÞ ¼ sinðk2x;mnxÞ � P2x;mn cosðk2x;mnxÞ
x 2 ½0; a2� ð37Þ

where P1x;mn ¼ P1xðk1x;mnÞ and P2x;mn ¼ P2xðk2x;mnÞ. It

may be proven that the x-eigenfunctions X 0
1;mnðxÞ and

X 0
2;mnðxÞ are orthogonal functions. However, they do not

satisfy the well-known orthogonality property given by
€OOzis�ik [22] for 1-D multi-layer composite media and

used by Haji-Sheikh and Beck [9] in the direction per-

pendicular to the layers of a 3-D two-region slab. Fur-

thermore, they do not verify even the orthogonality

relations proposed by de Monte for both 1-D two-layer

slabs [17] and 1-D multi-layer bodies [18]. The reason for

all that is due to the functions chosen as eigenfunctions

of the heat conduction problem in the x-direction.
Consequently, X 0

1;mnðxÞ and X 0
2;mnðxÞ satisfy the following

orthogonality property (see Ref. [19] for the proof of this

property):

k2x;mn

k1x;mn

Z 0

x¼�a1

X 0
1;mnX

0
1;mk dxþ

a1k1k1x;mk

a2k2k2x;mk

Z a2

x¼0

X 0
2;mnX

0
2;mk dx

¼
0 for n 6¼ k

Nx;mn for n ¼ k

�
ð38Þ

where the x-norm Nx;mn may be evaluated as (see Ref.

[19])

Nx;mn ¼
k2x;mn

k1x;mn

1þ P2
1x;mn

2

 !

� a1

 
þ 1

k2
1x;mnk1=h1 þ h1=k1

!
þ a1k1k1x;mn

a2k2k2x;mn

�
1þ P2

2x;mn

2

 !
a2

 
þ 1

k2
2x;mnk2=h2 þ h2=k2

!

þ P1x;mn

2k2x;mn

a1

a2

 
�

k2
2x;mn

k2
1x;mn

!
ð39Þ

Even though the choice of the functions (36) and (37)

as x-eigenfunctions of the problem has required to de-

velop a new orthogonality property, namely Eq. (38),

such a choice has been done with the target to identify

and stress those algebraic terms which take into ac-

count the heat conduction in the y-direction and affect

the thermal field in the x-direction where the slab is

two-layered. As an example, the last term on the right-

hand side of Eq. (39) accounts exactly for the heat

transfer by conduction in the y-direction in the two-

directional two-region domain of Fig. 1 (another simi-

lar term appears in Eq. (61)). In fact, this term vanishes

in the case of 1-D temperature field which takes place

in 1-D two-layer slab since ky ¼ 0 in Eq. (31). Instead,

as may be noted through Eqs. (32) and (33), the

heat conduction in the y-direction is completely inde-

pendent of what happens across the layers (i.e., in the

x-direction).
As a matter of fact, a one-dimensional thermal field

can also take place in a two-dimensional two-layer do-

main (see Sections 9.1 and 9.2). Additionally, the last

term on the right-hand side of Eq. (39) can also vanish in

the case of two-dimensional temperature field. However,

this occurs only when a1 ¼ a2 with k1 6¼ k2 (see Eq. (31)

with ky 6¼ 0). In this case, the heat conduction in the y-
direction does not affect the heat flow in the x-direction.
On the contrary, when a1 is very different from a2, the

term mentioned above will be very large in value and

the heat exchange in the y-direction will strongly affect

the temperature field along the x-direction. Therefore, a
basic role is played by the thermal diffusivity of each of

the two layers!

8. General solution in a double-series form

Following what was said in the previous Sections 5–

7, the time-variable function GiðtÞ ði ¼ 1; 2Þ defined by

Eq. (15) becomes

Gi;mnðtÞ ¼ e�ðk2
1x;mnþk2y;mÞa1t tP 0 ð40Þ

Therefore, bearing in mind Eqs. (8), (32), (34), (35) and

(40), and setting B1x;mnBy;m ¼ cmn, we can write:

h1;mnðx; y; tÞ ¼ cmnX 0
1;mnðxÞY 0

mðyÞe
�ðk2

1x;mnþk2y;mÞa1 t ð41Þ

h2;mnðx; y; tÞ

¼ cmn
k1k1x;mn

k2k2x;mn
X 0
2;mnðxÞY 0

mðyÞe
�ðk2

1x;mnþk2y;mÞa1 t ð42Þ

Then the general solution for the thermal fields h1ðx; y; tÞ
and h2ðx; y; tÞ may be constructed by taking a double

linear sum of all individual solutions given by Eqs. (41)

and (42) over all y- and x-eigenvalues concerning the first
layer, i.e. ky;m and k1x;mn, and the second layer, i.e. ky;m

and k2x;mn, respectively. Thus, we have the infinite dou-

ble-series shown below

h1ðx; y; tÞ ¼
X1
m¼0;1

Y 0
mðyÞe�k2y;ma1t

�
X1
n¼0;1

cmnX 0
1;mnðxÞe

�k2
1x;mna1t

" #

ð�a1 6 x6 0; 06 y6 b; tP 0Þ ð43Þ
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h2ðx; y; tÞ ¼
k1
k2

X1
m¼0;1

Y 0
mðyÞe�k2y;ma1t

�
X1
n¼0;1

cmn
k1x;mn

k2x;mn
X 0
2;mnðxÞe

�k2
1x;mna1 t

" #

ð06 x6 a2; 06 y6 b; tP 0Þ ð44Þ

which represent the general solution to the heat con-

duction problem here under consideration.

9. Temperature solution

Eqs. (43) and (44) still have to fit the initial condition

(7). Therefore, they must hold that

F1ðx; yÞ ¼
X1
m¼0;1

Y 0
mðyÞ

X1
n¼0;1

cmnX 0
1;mnðxÞ

" #

ð�a1 6 x6 0; 06 y6 bÞ ð45Þ

F2ðx; yÞ ¼
k1
k2

X1
m¼0;1

Y 0
mðyÞ

X1
n¼0;1

cmn
k1x;mn

k2x;mn
X 0
2;mnðxÞ

" #

ð06 x6 a2; 06 y6 bÞ ð46Þ

The coefficients cmn can be derived by using the y- and
x-orthogonality relations, as shown in the following.

Both sides of Eq. (45) are multiplied by X 0
1;jkðxÞY 0

j ðyÞ,
and the resulting expression is integrated over the

ranges x ¼ �a1 to x ¼ 0 and y ¼ 0 to y ¼ b. We ob-

tain:Z b

y¼0

Z 0

x¼�a1

F1ðx; yÞX 0
1;jkY

0
j dxdy

¼
X1
m¼0;1

Z b

y¼0

Y 0
mY

0
j dy

�
X1
n¼0;1

cmn

Z 0

x¼�a1

X 0
1;mnX

0
1;jk dx

" #
ð47Þ

Applying the y-orthogonality property (33), Eq. (47)

becomes

1

Ny;m

Z b

y¼0

Z 0

x¼�a1

F1ðx; yÞX 0
1;mkY

0
m dxdy

¼
X1
n¼0;1

cmn

Z 0

x¼�a1

X 0
1;mnX

0
1;mk dx ð48Þ

Similarly, both sides of Eq. (46) can be multiplied by

ða1k1x;jk=a2k2x;jkÞX 0
2;jkðxÞY 0

j ðyÞ, and the resulting expres-

sion can be integrated from x ¼ 0 to x ¼ a2 and from

y ¼ 0 to y ¼ b:

a1k1x;jk

a2k2x;jk

Z b

y¼0

Z a2

x¼0

F2ðx; yÞX 0
2;jkY

0
j dxdy

¼ a1k1k1x;jk

a2k2k2x;jk

X1
m¼0;1

�
Z b

y¼0

Y 0
mY

0
j dy

X1
n¼0;1

cmn
k1x;mn

k2x;mn

Z a2

x¼0

X 0
2;mnX

0
2;jk dx

" #

ð49Þ

By using the y-orthogonality property (33), Eq. (49)

reduces to

1

Ny;m

a1k1x;mk

a2k2x;mk

Z b

y¼0

Z a2

x¼0

F2ðx; yÞX 0
2;mkY

0
m dxdy

¼ a1k1k1x;mk

a2k2k2x;mk

X1
n¼0;1

cmn
k1x;mn

k2x;mn

Z a2

x¼0

X 0
2;mnX

0
2;mk dx ð50Þ

Summing up Eqs. (48) and (50), and applying the x-
orthogonality property (38), we derive the coefficient cmn
with the following result

cmn ¼
1

Nx;mnNy;m

k2x;mn

k1x;mn

�
Z b

y¼0

Y 0
mðyÞ

Z 0

x¼�a1

F1ðx; yÞX 0
1;mnðxÞdx

� �
dy

þ 1

Nx;mnNy;m

a1

a2

�
Z b

y¼0

Y 0
mðyÞ

Z a2

x¼0

F2ðx; yÞX 0
2;mnðxÞdx

� �
dy ð51Þ

Eqs. (43) and (44), where cmn may be evaluated through

Eq. (51), give the desired temperature distribution (in

default of the ambient temperature T1) as a function of

position ðx; yÞ and time t.

9.1. Temperature solution when Fi(x; y)¼ Fix(x)Iiy(y)

If F1ðx; yÞ ¼ F1xðxÞI1yðyÞ, F2ðx; yÞ ¼ F2xðxÞI2yðyÞ and

I1yðyÞ ¼ I2yðyÞ ¼ IyðyÞ, where IyðyÞ is a non-dimen-

sional y-space-variable function, then cmn given by Eq.

(51) may be rewritten as cmn ¼ cy;mcx;mn, where

cy;m ¼ 1

Ny;m

Z b

y¼0

IyðyÞY 0
mðyÞdy ð52Þ

cx;mn ¼
1

Nx;mn

k2x;mn

k1x;mn

Z 0

x¼�a1

F1xðxÞX 0
1;mnðxÞdx

�

þ a1

a2

Z a2

x¼0

F2xðxÞX 0
2;mnðxÞdx

�
ð53Þ

Consequently, Eqs. (43) and (44) corresponding to the

first and second layers, respectively, become
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h1ðx; y; tÞ ¼
X1
m¼0;1

#y;mðy; tÞ
X1
n¼0;1

h1x;mnðx; tÞ
" #

ð�a1 6 x6 0; 06 y6 b; tP 0Þ ð54Þ

h2ðx; y; tÞ ¼
X1
m¼0;1

#y;mðy; tÞ
X1
n¼0;1

h2x;mnðx; tÞ
" #

ð06 x6 a2; 06 y6 b; tP 0Þ ð55Þ

where h1x;mnðx; tÞ, h2x;mnðx; tÞ and #y;mðy; tÞ are given, re-

spectively, by

h1x;mnðx; tÞ ¼ cx;mnX 0
1;mnðxÞe

�k2
1x;mna1 t ð�a1 6 x6 0; tP 0Þ

ð56Þ

h2x;mnðx; tÞ ¼ cx;mn
k1k1x;mn

k2k2x;mn
X 0
2;mnðxÞe

�k2
1x;mna1 t

ð06 x6 a2; tP 0Þ ð57Þ

#y;mðy; tÞ ¼ cy;m � Y 0
mðyÞe�k2y;ma1 t ð06 y6 b; tP 0Þ ð58Þ

Bearing in mind the expressions of Y 0
mðyÞ and Ny;m given

in Table 2, it may be noted that cm defined by Eq. (52)

is a dimensionless coefficient. Consequently, #y;mðy; tÞ
given by Eq. (58) is also a non-dimensional function.

If the two-layer composite slab is initially character-

ised by a temperature distribution dependent only on the

space coordinate x, i.e. F1ðx; yÞ ¼ F1xðxÞ and F2ðx; yÞ ¼
F2xðxÞ in Eq. (51) (which means IyðyÞ ¼ 1 in Eq. (52)),

then the expression (52) for cy;m simplifies to the one

given in Table 2 (the expression (53) for cx;mn does not

change, of course!). In this particular case, if the

boundary surfaces in the y-direction are kept insulated

(i.e., the y-boundary conditions are of the second kind

and homogeneous ) ‘‘case 2’’ in Table 2), then there is

no temperature variation in the y-direction. In fact,

bearing in mind Eqs. (30) and (31) combined to case 2 of

Table 2, Eqs. (54) and (55) reduce, respectively, to

h1ðx; tÞ ¼
X1
n¼0;1

h1x;nðx; tÞ ð�a1 6 x6 0; tP 0Þ ð59Þ

h2ðx; tÞ ¼
X1
n¼0;1

h2x;nðx; tÞ ð06 x6 a2; tP 0Þ ð60Þ

where the subscript �m ¼ 0� does not appear since the x-
eigenvalues k1x;n ðn ¼ 0; 1; 2; 3; . . .Þ are independent of

the only �efficient� y-eigenvalue, i.e. ky;m¼0 ¼ 0 (see Table

2). The results expressed by Eqs. (59) and (60) are in

accordance with the ones reached by Salt [3,4], Mik-

hailov and €OOzis�ik [5], and Beck [23]. Therefore, �to
have a one-dimensional thermal field in the x-direction,
we would have homogeneous boundary conditions of

the second kind in the y-direction and an initial

temperature distribution dependent only on the space

coordinate x�.

9.2. Temperature solution when Fi(x,y)¼ h0

If the two-dimensional two-layer composite slab

is initially at a uniform temperature, i.e. F1ðx; yÞ ¼
F2ðx; yÞ ¼ h0 in Eq. (51) (which means IyðyÞ ¼ 1 in Eq.

(52) and F1xðxÞ ¼ F2xðxÞ ¼ h0 in Eq. (53)), then the ex-

pression for cy;m does not change and is still given in

Table 2, while the expression (53) for cx;mn becomes

cx;mn ¼
h0

Nx;mnk2x;mn

k2
2x;mn

k2
1x;mn

cosðk1x;mna1Þ
"(

� a1

a2

cosðk2x;mna2Þ
#
þ

k2
2x;mn

k2
1x;mn

P1x;mn sinðk1x;mna1Þ
"

� a1

a2

P2x;mn sinðk2x;mna2Þ
#
þ a1

a2

 
�

k2
2x;mn

k2
1x;mn

!)

ð61Þ

Of course, in the case here under consideration of �uni-
form initial temperature distribution, homogeneous

y-boundary conditions of the second kind make one-

dimensional the temperature field in the x-direction�.
Similarly to what was said for Eq. (39), the last term

between round brackets on the right-hand side of Eq.

(61) accounts for the heat conduction in the y-direction
and affect the thermal field in the x-direction. In fact, this

term vanishes in the case of 1-D temperature field which

takes place in 1-D two-layer domain since ky ¼ 0 in Eq.

(31). Concerning this, the coefficient cx;mn provided by

Eq. (61) reduces to the form for one-directional two-

layer planar geometry [17]. It should be noted that the

term mentioned above can also vanish in the case of

two-dimensional temperature field. However, this hap-

pens only when a1 ¼ a2 with k1 6¼ k2 (see Eq. (31) with

ky 6¼ 0).

10. Temperature solution when a1 ¼ a2 (k1 6¼ k2)

In this case, bearing in mind Eq. (31), we have that

k1x ¼ k2x ¼ kx. Therefore, the x-eigencondition (30)

simplifies to

P1xðkxÞ ¼ � k1
k2

P2xðkxÞ ð62Þ

where P1xðkxÞ and P2xðkxÞ are derived from Eq. (17)

simply setting k1x ¼ k2x ¼ kx. The roots kx;n ðn ¼
0; 1; 2; 3; . . .Þ of the transcendental equation (62) are the

x-eigenvalues related to both the first and second layers

and are independent of ky;m ðm ¼ 0; 1; 2; 3; . . .Þ given in

Table 2. Therefore, the x-eigenfunctions X 0
1;nðxÞ and

X 0
2;nðxÞ corresponding to the x-eigenvalues kx;n may be

defined as (see Eqs. (36) and (37)):

X 0
1;nðxÞ ¼ sinðkx;nxÞ þ P1x;n cosðkx;nxÞ x 2 ½�a1; 0� ð63Þ
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X 0
2;nðxÞ ¼ sinðkx;nxÞ þ ðk2=k1ÞP1x;n cosðkx;nxÞ
x 2 ½0; a2� ð64Þ

and satisfy the following orthogonality property from

Eq. (38)Z 0

x¼�a1

X 0
1;nX

0
1;k dxþ

k1
k2

Z a2

x¼0

X 0
1;nX

0
1;k dx

¼ 0 for n 6¼ k
Nx;n for n ¼ k

�
ð65Þ

The x-norm Nx;n may be evaluated from Eq. (39) as

Nx;n ¼
1þ P2

1x;n

2
a1

 
þ 1

k2
x;nk1=h1 þ h1=k1

!

þ k1
k2

1þ P2
2x;n

2

 !
a2

 
þ 1

k2
x;nk2=h2 þ h2=k2

!
ð66Þ

From what was said previously, it follows that solution

to the problem (when a1 ¼ a2 with k1 6¼ k2) may be

searched splitting up the corresponding 2-D eigenvalue

problem in two, separated, 1-D eigenvalue problems,

one across the layers (i.e., in the x-direction) and the

other along the composite slab (i.e., in the y-direction).
Both the eigenproblems are special cases of the classical

Sturm–Liouville problem [6,7].

Then the general temperature solution represented by

Eqs. (43) and (44) for the first and second layers, re-

spectively, becomes

h1ðx; y; tÞ ¼
X1
m¼0;1

Y 0
mðyÞe�k2y;mat

X1
n¼1;2

cmnX 0
1;nðxÞe�k2x;nat

" #

ð�a1 6 x6 0; 06 y6 b; tP 0Þ ð67Þ

h2ðx; y; tÞ ¼
k1
k2

X1
m¼0;1

Y 0
mðyÞe�k2y;mat

X1
n¼1;2

cmnX 0
2;nðxÞe�k2x;nat

" #

ð06 x6 a2; 06 y6 b; tP 0Þ ð68Þ

where kx;0 ¼ 0 is a root of the x-eigencondition (62) but it

is not an efficient eigenvalue of the problem since cor-

responding to X 0
1;0 ¼ 0 and X 0

2;0 ¼ 0 ) n ¼ 1; 2; 3; . . . in
Eqs. (67) and (68). The coefficient cmn appearing in the

above equations may be evaluated from Eq. (51) as

cmn ¼
1

Nx;nNy;m

Z b

y¼0

Y 0
mðyÞ

Z 0

x¼�a1

F1ðx; yÞX 0
1;nðxÞdx

� �
dy

þ 1

Nx;nNy;m

Z b

y¼0

Y 0
mðyÞ

Z a2

x¼0

F2ðx; yÞX 0
2;nðxÞdx

� �
dy

ð69Þ

If F1ðx; yÞ ¼ F1xðxÞI1yðyÞ, F2ðx; yÞ ¼ F2xðxÞI2yðyÞ and

I1yðyÞ ¼ I2yðyÞ ¼ IyðyÞ, where IyðyÞ is a non-dimen-

sional space-variable function, then cmn given by Eq. (69)

may be rewritten as cmn ¼ cy;mcx;n, where

cy;m ¼ 1

Ny;m

Z b

y¼0

IyðyÞY 0
mðyÞdy ð70Þ

cx;n ¼
1

Nx;n

Z 0

x¼�a1

F1xðxÞX 0
1;nðxÞdx

�

þ
Z a2

x¼0

F2xðxÞX 0
2;nðxÞdx

�
ð71Þ

Consequently, Eqs. (67) and (68) may be rewritten, re-

spectively, as

h1ðx; y; tÞ ¼ h1xðx; tÞ#yðy; tÞ ð72Þ

h2ðx; y; tÞ ¼ h2xðx; tÞ#yðy; tÞ ð73Þ

where h1xðx; tÞ, h2xðx; tÞ and #yðy; tÞ are

h1xðx; tÞ ¼
X1
n¼1;2

cx;nX 0
1;nðxÞe�k2x;nat ð�a1 6 x6 0; tP 0Þ

ð74Þ

h2xðx; tÞ ¼
k1
k2

X1
n¼1;2

cx;nX 0
2;nðxÞe�k2x;nat

ð06 x6 a2; tP 0Þ ð75Þ

#yðy; tÞ ¼
X1
m¼0;1

cy;mY 0
mðyÞe�k2y;mat ð06 y6 b; tP 0Þ ð76Þ

Bearing in mind the expressions of Y 0
mðyÞ and Ny;m given

in Table 2, it follows that cy;m defined by Eq. (70) is a

dimensionless coefficient. Consequently, #yðy; tÞ given by

Eq. (76) is also a non-dimensional function.

The results expressed through Eqs. (72) and (73) state

that the solution of a two-dimensional two-layer ho-

mogeneous boundary-value problem of unsteady heat

conduction may be written readily as the product of the

solutions of two, separated, one-dimensional problems,

one along the x-direction (two regions) and the other

along the y-direction (single region). This may be done if

the initial temperature distribution in each layer of the

body is given as a product of single space-variable

functions, i.e. F1ðx; yÞ ¼ F1xðxÞI1yðyÞ and F2ðx; yÞ ¼
F2xðxÞI2yðyÞ, and if the single space-variable functions

along the direction characterised by only one region are

independent of the layer, i.e. I1yðyÞ ¼ I2yðyÞ ¼ IyðyÞ.
Therefore, the �product solution� technique may be ap-

plied not only to multi-dimensional single-layer heat

conduction problems [21,22] but also to multi-dimen-

sional multi-layer ones.

Obviously, the case of initial temperature distribution

dependent only on the space coordinate x (i.e.,

F1ðx; yÞ ¼ F1xðxÞ and F2ðx; yÞ ¼ F2xðxÞ in Eq. (69) which

means IyðyÞ ¼ 1 in Eq. (70)), is also expressible in the

product form. In this case, the expression (70) for cy;m
simplifies to the one given in Table 2 (the expression for

cx;n does not change, of course!).
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Similarly, the case of uniform initial temperature

distribution (i.e., F1ðx; yÞ ¼ F2ðx; yÞ ¼ h0 in Eq. (69),

which means IyðyÞ ¼ 1 in Eq. (70) and F1xðxÞ ¼
F2xðxÞ ¼ h0 in Eq. (71)), is also expressible in the product

form. In this case, the expression for cy;m does not

change and is still given in Table 2, while the expression

(71) for cx;n becomes

cx;n ¼
h0

Nx;nkx;n
cosðkx;na1Þ½ � cosðkx;na2Þ

þ P1x;n sinðkx;na1Þ � P2x;n sinðkx;na2Þ� ð77Þ

11. Computation of the transverse eigenvalues

Introducing the dimensionless variables bn, Bi1, Bi2, j
and c defined in nomenclature, the x-eigencondition (62)

becomes

P1nðbnÞ þ
1

j
P2nðbnÞ ¼ 0 ð78Þ

where the functions P1nðbnÞ and P2nðbnÞ are (see Eq.

(17) with k1x ¼ k2x ¼ kx)

P1nðbnÞ ¼
bn þ Bi1 tanðbnÞ
Bi1 � bn tanðbnÞ

P2nðbnÞ ¼
jbn þ Bi2 tanðcbnÞ
Bi2 � jbn tanðcbnÞ

ð79Þ

It may be proven [19] that the roots bn;n ðn ¼ 1; 2; 3; . . .Þ
of the transcendental equation (78) are all real (the

negative roots are equal in absolute value to the positive

ones) and also form a monotonically increasing infinite

series according to the classical Sturm–Liouville prob-

lem.

Several algorithms may be used for computing

transverse eigenvalues of Eq. (78) and are available in

the specialised literature [9–11]. These algorithms usu-

ally require the user to supply two points such that the

function values at these two points have opposite sign.

For equations similar to the (78), where it is difficult to

obtain two such points, Aviles-Ramos et al. [11] devel-

oped a procedure to find the region where the root is

located. Then, a high-order Newton�s method was sug-

gested by the same authors to compute the root. Alter-

natively, an algorithm based on M€uuller�s method [20]

may be successfully and efficiently used to find the roots

of the eigencondition (78). It requires the user to supply

a vector fn of length p containing the initial guesses fn;n

for the dimensionless transverse eigenvalues bn;n

ðn ¼ 1; 2; 3; . . . ; pÞ, which are the components of the ei-

genvector bn. The number p may readily be established

through a criterion derived in [17] and used in the nu-

merical example of Section 12. It should be noted that

the �building� of the vector fn for Eq. (78) is the starting

step and the most difficult step for reaching convergence

(i.e., bn of Eq. (78)) of M€uuller�s method accurately and

rapidly.

Then, as shown in Ref. [19] where the treatment

is completely and exhaustively developed, the initial

guesses fn;n may be evaluated as

fn;n ¼
bn;h;nðBih;1;Bih;2Þ

ð1þ cÞ ð80Þ

where bn;h;n represents the nth dimensionless transverse

eigenvalue of a homogeneous (single-layer) rectangular

domain equivalent to the two-dimensional two-layered

domain here under consideration (Fig. 1). This equiva-

lence concerns both the geometry (same dimensions, i.e.

a1, a2 and b, and same origin for the 0xy frame of ref-

erence) and the boundary conditions (of third kind, with

the same heat transfer coefficients, i.e. h1 and h2). The
eigenvalues bn;h;n of the homogeneous domain are the

roots of the following well-known transcendental equa-

tion:

tanðbn;hÞ ¼
ðBih;1 þ Bih;2Þbn;h

b2
n;h � Bih;1Bih;2

ð81Þ

where Bih;i ¼ Biið1þ cÞk1=kh and kh may be evaluated as

[19]

k1
kh

¼ j þ c
j � ðc þ 1Þ ð82Þ

Therefore, fn;n defined by Eq. (80) depend on Bi1, Bi2,
j and c, which are the sole groups characterising bn;n

(see Eq. (78)). The eigenvalues bn;h;n of Eq. (81) may

be readily and easily calculated by using the explicit

approximate relations (with, at least, six-decimal place

accuracy) defined by Haji-Sheikh and Beck [24] for

homogeneous bodies with convective boundary con-

ditions, followed by whatever root-finding iteration to

realise a high degree of accuracy. Once the initial

guesses fn;n have been established, the convergence

(i.e., bn;n of Eq. (78)) of M€uuller�s method may be

reached only if the transverse eigencondition (78) is

given in the following form [19] (without vertical as-

ymptotes):

½Bi1Bi2 sinðbnÞcosðcbnÞ�jb2
n sinðcbnÞcosðbnÞ�

þ g1ðBi1;Bi2;j;bnÞ½sinðcbnÞcosðbnÞ� sinðbnÞcosðcbnÞ�

þbng2ðBi1;Bi2;jÞ½1� g3ðBi1;Bi2;jÞsinðcbnÞsinðbnÞ�

¼ 0 ð83Þ

where the quantities gi ði ¼ 1; 2; 3Þ are given in [19]

(however, it is a simple matter to derive them). The

procedure here proposed to estimate the initial guesses

fn;n (required by the algorithm based on M€uuller�s
method) for the dimensionless transverse eigenvalues
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bn;n of Eq. (83) has been carefully verified for wide

ranges of Bi1, Bi2, j and c, and for several their com-

binations. The convergence is always reached accurately

and in a short time. Of course, bn;n � fn;n only when

j ¼ 1.

12. Numerical example

A two-layer rectangular region (�a1 6 x6 a2,
06 y6 b; see Fig. 1) is initially at a uniform temperature

T0. For times t > 0, the boundaries at x ¼ �a1 and

x ¼ a2 dissipate heat by convection into an environment

at temperature T1 6¼ T0. Instead, the boundaries at y ¼ 0

and y ¼ b are subjected to a jump in the temperature and

are kept at T1 6¼ T0 for t > 0 () case 1 in Tables 1 and

2). For the dimensionless variables characterising the

problem, the following values are fixed: c ¼ 2, l ¼ 4,

Bi1 ¼ 1, Bi2 ¼ 2 and j ¼ 4.

The n-eigencondition (83) may numerically be

solved for the determination of the dimensionless

transverse eigenvalues bn;n as illustrated in the previous

section. In particular, the number p of transverse ei-

genvalues which has to be used in the dimensionless

series solutions H1n ¼ h1x=h0 and H2n ¼ h2x=h0, where

h1x and h2x are defined by Eqs. (74) and (75), respec-

tively, has been established by requiring that the exact

ðp ¼ n ¼ 1Þ and approximate ðp ¼ finiteÞ solutions in

the n-direction differ by not more than 3.5% in abso-

lute value. Of course, the maximum deviation between

the exact and approximate non-dimensional tempera-

tures along n is obtained for s ¼ 0 and in correspon-

dence to the n-boundary characterised by the lower

value of the Biot number, i.e. at n ¼ �1. It may be

proven that, when p ¼ 20, the percent deviation in

absolute value for s ¼ 0 is less than 3.2% at n ¼ �1.

Instead, for s ¼ 0, it is less than 1.5% at n ¼ c ¼ 2.

The first 20 dimensionless n-eigenvalues bn;n of the ei-

gencondition in the form (83) are given in Table 3,

together with the initial guesses fn;n. For sake of

completeness, the number of iterations NIT for the

convergence is also given as well as the results for the

eigencondition in the form (78). A good four eigen-

values are filtered by itself!

Fig. 2 shows the dimensionless isothermal curves

Hiðn;w; sÞ ¼ const within the two-dimensional two-

layered slab during the transient heat transfer between

slab and surrounding fluid at four different dimen-

sionless times. It may be noted that the isothermal

curves (normal to the heat flux lines at any point)

have a kink at the interface of the two-layer rectan-

gular domain. In particular, according to Eq. (6), the

temperature gradient is larger in the first layer which

is characterised by the lower thermal conductivity

ðj ¼ 4Þ. Additionally, in view of the values prescribed

for Bi1, Bi2 and j, the isothermal curves thicken

within the first slab-shaped region in the n-coordinate
direction.

Table 3

Eigenvector bn (including first 20 transverse eigenvalues) obtained starting from the initial guess vector fn defined by Eq. (80) when

Bi1 ¼ 1, Bi2 ¼ 2, c ¼ 2 and j ¼ 4

n fn Eq. (83) Eq. (78)

bn NIT bn NIT

1 0.526109717999275 0.488378138974359 7 0.488378138974359 9

2 1.312935899054485 1.549657105379747 8 1.549657105379747 10

3 2.256266866974628 2.170835074756995 7 2.170835074756995 8

4 3.255303632400386 3.243084139021714 7 3.243084139021714 12

5 4.275829090717518 4.511710306627925 8 4.511710306627925 10

6 5.306309217806367 5.151228190274521 8 5.151228190274521 10

7 6.342108755141915 6.335621173166092 7 – –

8 7.381058180290705 7.606195860004210 9 7.606195860004210 13

9 8.422018658121692 8.248172858352781 9 8.248172858352781 14

10 9.464338390980981 9.459960892229189 7 – –

11 10.507618574944000 10.726875700234650 10 10.726875700234650 16

12 11.551601961050590 11.369585068212270 10 11.369585068212270 14

13 12.596115362377250 12.592818102294480 7 – –

14 13.641038001116270 13.856732824312450 11 13.856732824312450 23

15 14.686283123158100 14.499751333696300 10 14.499751333696300 15

16 15.731786829280720 15.729143733192350 7 15.729143733192350 11

17 16.777501027096940 16.990828456225510 11 16.990828456225510 16

18 17.823388835589520 17.634005247721890 10 17.634005247721890 24

19 18.869421502533970 18.867216516684070 7 – –

20 19.915576284699860 20.127221886762410 11 20.127221886762410 16
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Fig. 2. Isothermal curves for a two-dimensional two-layer slab, characterised by n 2 ½�1; c ¼ 2� and w 2 ½0;l ¼ 4�, at different di-
mensionless times: (a) s ¼ 0:5; (b) s ¼ 1:0; (c) s ¼ 1:5; and (d) s ¼ 2:0.
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13. Conclusions

Heat conduction in two-directional two slab-shaped

regions has been analytically investigated in a time-

dependent condition. It has been shown that plane

temperature fields, which appear in geometric two-

dimensional heat flow, are significantly more difficult to

calculate than the corresponding cases in which tem-

perature only changes in one coordinate direction per-

pendicular to the layers. In particular, it has been

shown that the fulfilment of the inner boundary con-

ditions is possible only if constant temperature kept at

zero or adiabatic edges are rigorously prescribed at the

outer boundary conditions along the layers. Further-

more, homogeneous boundary conditions of the second

kind along the layers and a either uniform or variable

across the layers initial temperature distribution make

one-dimensional the temperature field in the direction

perpendicular to the layers. Therefore, in this case, the

composite slab may be considered as a �lumped (ther-

mal) capacitance system� in the direction parallel to the

layers.

The transverse eigenvalues have been computed by

the use of an efficient and accurate procedure based on

the concept of homogeneous (single-layer) rectangular

domain equivalent to the two-dimensional two-layered

domain under consideration. This concept has been used

for searching the initial guesses for the transverse ei-

genvalues inherent to the eigenproblem associated to the

transient multi-layer heat conduction. Then, the M€uuller
root-finding iteration has been utilised to compute the

eigenvalues.

By setting thermal diffusivity ratio unitary, a simpli-

fied solution for transient thermal response (dealing

properly with thermal conductivity ratios of all magni-

tudes) emerges. In fact, it can be expressed as the

product of two, separated, one-directional solutions, one

across the layers and the other along the composite slab,

provided the initial temperature distribution in each

layer of the body is either: (1) given as a product of

single space-variable functions, where the single space-

variable functions parallel to the layers are independent

of the layer; either (2) dependent only on the space co-

ordinate in the direction perpendicular to the layers, or

(3) simply uniform.

Finally, the searched complete temperature solution

prepared for computer implementation can be used to

aid in the verification of approximate numerical com-

mercial programs.
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